Problem:
f(a,empty()) -> g(a,empty())
f(a,cons(x,k)) -> f(cons(x,a),k)
g(empty(),d) -> d
g(cons(x,k),d) -> g(k,cons(x,d))
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {4,3}
transitions:
g1(10,5) -> 3*
g1(1,10) -> 4*
g1(7,5) -> 3*
g1(2,5) -> 3*
g1(2,7) -> 4*
g1(1,5) -> 3*
g1(1,7) -> 4*
g1(2,10) -> 4*
cons1(2,12) -> 5*
cons1(2,14) -> 5*
cons1(1,2) -> 7*
cons1(1,10) -> 7*
cons1(1,12) -> 5*
cons1(1,14) -> 5*
cons1(2,1) -> 7*
cons1(2,5) -> 5*
cons1(2,7) -> 7*
cons1(1,1) -> 7*
cons1(1,5) -> 5*
cons1(1,7) -> 7*
cons1(2,2) -> 10*
cons1(2,10) -> 7*
f1(10,1) -> 3*
f1(7,1) -> 3*
f1(10,2) -> 3*
f1(7,2) -> 3*
empty1() -> 5*
g2(7,12) -> 3*
g2(2,12) -> 3*
g2(7,14) -> 3*
g2(2,14) -> 3*
g2(1,12) -> 3*
g2(1,14) -> 3*
g2(10,12) -> 3*
g2(10,14) -> 3*
f0(1,2) -> 3*
f0(2,1) -> 3*
f0(1,1) -> 3*
f0(2,2) -> 3*
cons2(2,12) -> 12*
cons2(2,14) -> 12*
cons2(1,12) -> 12*
cons2(1,14) -> 12*
cons2(2,5) -> 14*
cons2(1,5) -> 12*
empty0() -> 1*
g0(1,2) -> 4*
g0(2,1) -> 4*
g0(1,1) -> 4*
g0(2,2) -> 4*
cons0(1,2) -> 2*
cons0(2,1) -> 2*
cons0(1,1) -> 2*
cons0(2,2) -> 2*
1 -> 4*
2 -> 4*
5 -> 3*
7 -> 4*
10 -> 4*
12 -> 3*
14 -> 3*
problem:
Qed